Вфигуру ограниченную пораболой y=8-1\2*x^2 и осью ox,поместили прямоугольника,две вершины которого лежат на параболе,а две-на оси ox.найдите наибольший из периметров этих прямоугольников.25
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
1. кат.1 = 9 По теореме Пифагора: кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2 гип.-? 9^2 + 40^2 = (Гип.)^2 81 + 1600 = (Гип.)^2 Гип. = √1681 Гип. = 41 2. 25^2 - 15^2 = kat^2 625 - 225 = kat^2 kat = √400 kat = 20 1. Треугольник равносторонний т.к. АВ = ВС = АС Высота в равностороннем треугольнике является медианой => Cторона на которую падает высота делится на 2 равных отрезка: , тогда по теореме Пифагора: CH== 23 * 3 = 69 2. Рассмотрим треугольник СНА: Т. к. угол С = 30 гр., то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС АН =1/2 АС => АН = 1/2 * 22 = 11 см
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))