абсд равнобедренная трапеция, ад нижнее основание длиной 16, бс верхнее основание длиной 10, аб и сд боковые равные стороны. У равнобедренрой трапеции боковые стороны и диагонали рааны. Точка пересечения диагоналей о, все углы около нее прямые по условию. Проведеи через о перпендикуляр к основаниям кл, к на верхнем, л на нижнем. Треугтдьник всо равнобедренный прямоугольный, ок в нем высота, биссектриса и медиана, причем, медиана, проведенная к гипотенузе, значит равна половине гипотенузы бс, то есть, 5. Аналогично, ол равно 8.
Поэтому высота кл равна 13.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.