Докажем, что АВСD - трапеция с основаниями
Рассмотрим треугольники ВСО и АDO. Они подобны по второму признаку: угол ВОС=углу АОD (как вертикальные), АО/ОС=18/12=1,5 и ВО/OD=15/10=1,5.
У подобных фигур соответствующие углы равны, т.е. угол СВО=углу ОDA и угол ВСО=углу ОАD. В то же время углы СВО и ОDA являются внутренними накрест лежащими при секущей ВD и прямых ВС и AD, следовательно, ВС || AD.
Аналогично, углы ВСО и ОАD являются внутренними накрест лежащими при секущей АС и прямых ВС и AD, следовательно, ВС || AD.
По определению трапеция - четырёхугольник, у которого две противоположные стороны параллельны, а две другие непараллельны. Так как ВС || AD, то АВСD - трапеция, что и требовалось доказать.
Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)
По свойству медиан треугольника имеем:
OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5
где OB=10 по условию
Тогда BB'=OB+OB'=10+5=15
Из прямоугольного треугольника B'CB по теореме Пифагора найдем
B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12
где BC=9 по условию
Подставим в (1) вместо B'C его значение, найдем CA:
CA=2*12=24
И, наконец, найдем искомую площадь S треугольника ABC:
S=CA*BC/2=24*9/2=12*9=108