1. 1) любые две точки всегда принадлежат прямой, т.к. через две различные точки можно провести одну и только одну прямую, а уж если две точки сливаются в одну - и тем более.
2) Любые три точки всегда лежат в одной плоскости, поскольку через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну, если же они находятся на одной прямой, то через них можно провести бесчисленное множество плоскостей, и выбрать одну, в которой лежат эти точки, а вот четвертую точку можно положить в плоскость, или "подвесить" в пространство, т.е. ответ на этот вопрос НЕТ. т.к. не всегда.
2. Если две различные плоскости имеют общую точку, то они пересекаются по ПРЯМОЙ, проходящей через эту точку. т.е. общих не только одна, а все, лежащие на прямой. ответ НЕТ.
3. Нет. Т.к. не всегда третью можно положить на ту же плоскость, даже если они все три пересекаются. Нарисуйте две пересекающиеся прямые, они всегда лежат в одной плоскости и проведите прямую, которая проходит через точку пересечения, перпендикулярно двум данным, т.е. плоскости. Ясно, что эта третья прямая не лежит в данной плоскости.
4.1) Прямая, имеющая только одну общую точку с окружностью, так и называется касательной к окружности, если речь о плоскости.
2) если речь о пространстве, то та прямая, которая перпендикулярна радиусу, будет касательной, если же прямаЯ, проходящая через эту единственную точку, не перпендикулярна радиусу, касательной к окружности она не будет. Поэтому здесь ответ нет.
См. Объяснение
Объяснение:
№ 1.
Считаем количество клеток до линии ВС - 4 клетки.
В условии сказано, что размер одной клетки 1 х 1, но при этом не сказано, чего (миллиметров, сантиметров, метров и т.д.). Поэтому и ответ надо дать в виде безразмерной величины.
ответ: 4.
№ 2.
Рассчитаем расстояния между точками.
Согласно теореме Пифагора:
АС = √(1² + 2²) = √5, где 1 и 2 - количество клеток по горизонтали и по вертикали.
АВ = √(2² + 1²) = √5, где 2 и 1 - количество клеток по горизонтали и по вертикали.
ВС = √(1² + 3²) = √10, где 1 и 3 - количество клеток по горизонтали и по вертикали.
Так как АС = АВ = √5, то треугольник АВС - равнобедренный.
А т.к. ВС² = АС² + АВ² = √((√5)² +(√5)²) = √10, то треугольник АВС - прямоугольный.
В равнобедренном треугольнике углы при основании равны.
Следовательно, угол АВС равен углу АСВ и равен:
∠АВС = (180°-90°) : 2 = 45°
ответ: ∠АВС = 45°