как известно, у параллелограмма противоположные стороны равны. Поэтому, мы можем попробовать составить два вектора - AB и CD
если они параллельны друг другу, то будет выполняться условие AB=CD*n
где n-некое число
AB=(-2-(-5);3-(-6))=(3;9)
CD=(7-10;0-9)=(-3;-9)
Как видно, AB=CD*-1, поэтому вектора AB и CD параллельны
Проверим это же условие для сторон AD и BC
AD=(7-(-5);0-(-6))=(12;6)
BC=(10-(-2);9-3)=(12;6)
Как видно, вектора AD и BC параллельны
Есть еще одно условие: если диагонали четырехугольника пересекаются в одной точке и делятся в ней пополам, то четырехугольник - параллелограмм.
Для этого найдем координаты середин отрезков AC и BD
Как видно, обе диагонали имеют середины в одной и той же точке
Учитывая все доказательства выше, можно говорить, что ABCD - параллелограмм
Длины всех сторон можем найти, посчитав длины векторов выше
AB=(3;9)
CD=(-3;-9)
AD=(12;6)
BC=(12;6)
Объяснение:
Определение-хоронимы: собственное имя любой территории, имеющей определённые границы: небольшого пространства (луг, лес, городской район или микрорайон), исторической области, административного района или страны. Класс топонима.
Примеры:Замоскворечье, Лужники.
Определение-оронимы: собственное название любого объекта рельефа земной поверхности: как выпуклого (гора, горный хребет, холм), так и вогнутого (долина, овраг, впадина, ущелье, котлован), то есть любого орографического объекта; класс топонима
Примеры:гора Эльбрус, Алайская долина, Заалайский хребет, Русские горы, Домбайская поляна, Долгая щель, Боровицкий холм, Воробьёвы горы.
Объяснение: надеюсь
ее диагональ АС = ВС + AD
угол между диагоналями АС и ВD равен 60°
Доказать, что АВСD - равнобедренная трапеция
Доказательство:
проведем из пункта В прямую к диагонали АС (пункт пересечения обозначим О), так, что ВС = СО
тогда АО = АС - СО = (ВС + AD) - ВС = AD
имеем два равнобедренных треугольника ∆ВСО (ВС = СО) и ∆AOD (АО = AD)
<CBO = <COB (∆BCO- равнобедренный)
<AOD = <ADO (∆AOD- равнобедренный)
<BCO = <OAD (накрест лежащие) ==> <CBO = <COB = <AOD = <ADO
Раз <AOD = <BOC, а стороны АО и СО этих углов лежат на одной прямой, то <AOD и < BOC -вертикальные
и значит ВО и OD лежат на одной прямой ==>
O - пункт пересечения диагоналей AC и BD
тогда <BOC = AOD = 60° (по условию)
<CBO = <COB = <AOD = <ADO = 60°
<BCO = <OAD = 180 - <AOD - <ODA = 60° ==>
==> ∆BCO и ∆AOD - равносторонние
BC = CO = OB (∆BCO - равносторонний)
AO = OD = AD (∆AOD - равносторонний)
<BOA = <COD (вертикальные) ==>
==> ∆BOA = ∆COD (по двум сторонам и углу между ними)
значит BA = CD
и делаем вывод, что ABCD - равнобедренная трапеция
всё =)