В решении этой задачи применима теорема Пифагора.
Смотрите рисунок, данный во вложении.
Если продолжить расстояние от точки А - проекции М на прямую α -
на длину расстояния от точки N до ее проекции В,
и соединить конец С этого отрезка с N,
получим прямоугольный треугольник MСN,
в котором известны гипотенуза MN=13 см,
и меньший катет МС=2+3=5 см
Если знаете несколько из Пифагоровых троек, а это как раз такая тройка (13,5,12), то, возможно, догадаетесь, что СN =12 см
По теореме Пифагора:
СN²=MN²- МС²= 169-25=144
СN=12 см
АВ=СN=12 см
ответ: Искомое расстояние равно 12 см
Периметр прямоугольника равен удвоенной сумме двух его смежных сторон. P = 2(AB+BC),
BC = BK + KC = 8 см + 5 см = 13 см.
AK — биссектрисса угла A, угол BAK = угол KAD = 90°÷2 = 45°,
Рассмотрим треугольник ABK. Сумма углов треугольника равна 180°. угол BKA = 180° – угол ABK – угол BAK = 180° – 90° – 45° = 45°, угол BKA = угол BAK, углы при основании равны, треугольник — равнобедренный, значит боковые стороны равны, AB = BK = 8см.
P = 2(AB + BC) = 2(8см + 13см) = 2 × 21 см = 42 см.
ответ: 42 см