3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
Обозначим коэффициент пропорциональности через k, тогда диагонали ромба 3k и 4k. С одной стороны площадь ромба равна половине произведения диагоналей, то есть: Sabcd = 1/2 d₁ * d₂ = 1/2 *3k *4k = 6k² C другой стороны площадь ромба равна произведению стороны на высоту, то есть: B Sabcd = AH * BC OC = 1,5k BO = 2k H Из ΔBOC по теореме Пифагора BC² = (1,5k)² + (2k)² = 6,25k² A O C BC = 2,5k Sabcd = 3,6 * 2,5k = 9k Следовательно D 6k² = 9k 2k = 3 k = 1,5 Значит BC = 2,5 * 1,5 = 3,75 Pabcd = 4 * 3,75 = 15
1. В основании – прямоугольник, поэтому треугольник ABD – прямоугольный. По теореме Пифагора находится его гипотенуза.
BD−→−=AB2+AD2−−−−−−−−−−√=62+82−−−−−−√=10
2. Достроим четырехугольник KPRM, где P и R – середины BB1 и DD1 соответственно.
По признаку параллелограмма все четыре получившихся четырехугольника ABPK,BCMP,CMRD и AKRD – параллелограммы.
Следовательно, KPRM – тоже параллелограмм, причем равный основаниям параллелепипеда. А значит, и прямоугольник.
Диагонали прямоугольника KM=PR=BD= равны. Следовательно, KM−→−=10
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
И CC1−→−=8
4. Рассмотрим треугольник B1CC1.
Его уголCC1B1=60° , его стороны CC1 и B1C1
Объяснение: