Получили прямоугольный треугольник, одним катетом АС которого является перпендикуляр, а наклонная АВ является гипотенузой, проекция на плоскость ВС - это второй катет. Ищем его по теореме Пифогора.
√(81-36)=√45см
Получили треугольник АВС, в котором АС=6см, АВ=9см, ВС=√45см
Из вершины прямого угла С проводим перпендикуляр СН на гипотенузу АВ. АН - это и есть проекция перпендикуляра АС на наклонную АВ. Можно решать через подобие полученных треугольников, но лучше по теореме Пифагора.
Пусть ВН=х, тогда АН=9-х
Из треуг. АНС: CH^2=36-(9-x)^2
Из треуг. СНВ: CH^2=45-x^2
Приравниваем:
36-(9-x)^2=45-x^2
36-81+18х-x^2==45-x^2
18x=90
x=5
CH=√(45-25)=√20=2√5см
Впрямоугольном треугольнике один острый угол В=30градусам, значит второй острый угол А= 180-(90+30)=60град.
В тр.АМС угол АМС=60гр., но и угол МАС (или угол А тр.АВС)=60гр., третий угол МСА= 180-2*60=60гр.У нас получился равносторонний треугольникАМС. Но в тр.АВС катет, лежащий против угла в 30гр. равен половине гипотенузы, т.е.СА=1/2АВ.
Поэтому в тр.МСА все стороны равны 1/2АВ.
Рассмотрим тр.СВМ.Угол В=30гр., угол ВСМ=90-60=30гр., угол ВМС= 180-30*2=120гр.
Треугольник СВМ- равнобедренный,т.к. углы при основании равны. Поэтому-стороны ВМ=МС.=1/2АВ. Значит отрезок СМ делит гипотенузу пополам,т.е. является медианой треугольника АВС.