Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Биссектриса делит катет на отрезки 4см и 5 см, значит весь катет равен 9 см. По свойству биссектрисы она делит сторону треугольника пропорционально соответствующим сторонам. Пусть коэффициет пропорциональности равен х (х>0), тогда катет равен 4х, а гипотенуза 5х. По теореме Пифагора (5х)² = (4х)² + 9² 25 х² = 16х² + 81 9х² = 81 х² = 9 х = 3 Значит второй катет равен 4 * 3 = 12 а гипотенуза 5 * 3 = 15 Радиус описанной окружности равен половине гипотенузы R = 15 : 2 = 7,5см 2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике 4² = х * (х +6), получим квадратное уравнение х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи). Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12 h = √12 = 2√3cм
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.