М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Matvey2281337
Matvey2281337
19.02.2020 08:33 •  Геометрия

С1. дан равнобедренный треугольник авс с основанием ас. постройте: а). фигуру, на которую отображается отрезок вс при центральной симметрии с центром в точке а; б). фигуру, на которую отображается угол асв при осевой симметрии с осью ас. 2. известны координаты точек а (-1; -2), b (3; 0), c (-1; 0). найдите координаты точки, в которую отображается середина отрезка ав: а). при центральной симметрии с центром с; б). при осевой симметрии с осью ас. 3. центр окружности параллельным переносом на вектор отображается в точку пересечения прямых х = 2 и y = -3. найдите координаты вектора .

👇
Ответ:
matwei123
matwei123
19.02.2020
При симметрии (любой) отрезок отобразится в отрезок, угол в угол...
симметрия не меняет расстояний и углов)) 
середина отрезка АВ имеет координаты: (-1+3)/2; (-2+0)/2 
а) S(1; -1) ---> S1(-3; 1) 
б) S(1; -1) ---> S2(-3; -1) 

С1. дан равнобедренный треугольник авс с основанием ас. постройте: а). фигуру, на которую отображает
С1. дан равнобедренный треугольник авс с основанием ас. постройте: а). фигуру, на которую отображает
4,7(62 оценок)
Ответ:
SomikBOOM
SomikBOOM
19.02.2020
1) От вершины  А треугольника АВС  в противоположную сторону от данного треугольника нужно отобразить такой же треугольник.  Получим треугольник АВ1С1
Треугольник нужно отобразить вниз относительно стороны АС,т.е. вершина В опустится в низ. Получим треугольник АВ1С. Тогда получим угол АСВ1
 2)
а) Если рассмотреть фигуру АВС как прямоугольный треугольник,то АС=2, СВ=4ед. При центральной симметрии, найдем середину отрезка АВ,т.е середину гипотенузы, она равна х= -1+3/2=1; у=-2+0/2= -1. Значит середина отрезка имеет координаты (1;-1). Точка симметричная относительно вершины С будет вершиной такого же прямоугольного треугольника т.е. получившийся при симметрии треугольник будет иметь координаты А1(-1;2) В1(-5;0). Найдем середину отрезка х= -1-5/2= -3 у=2+0/2= 1. Т.е. точка которую отображается середина отрезка АВ при центральной симметрии с центром С имеет координаты (-3;1) 
б) Середину отрезка АВ мы нашли из первой задачи. Если при осевой симметрии с осью АС,то с построим прямоугольный треугольник симметричный относительно АС,тогда получим треугольник с координатами В1(-5;0),а точка А сохранит свои координаты. Найдем середину отрезка АВ1: х=-5-1/2= -3; у=0-2/2= -1. Значит точка в которой отображается середина отрезка АВ при осевой симметрии с осью АС имеет координаты (-3;-1)   
 
4,5(50 оценок)
Открыть все ответы
Ответ:
KristyLis
KristyLis
19.02.2020

task/30246302  В треугольнике заданы вершина А(4,6), уравнения медианы x-5y+7=0 и высоты x+4y-2=0 выходящих из одной вершины. Найти координаты остальных вершин, составить уравнения сторон, а также найти длину высоты треугольника.

решение  Для определенности пусть медиана BM , а  высота BH .  Координаты этой вершины  B определяется в результате решения системы { x -5y +7=0 ; x + 4y-2= 0 . ⇔  {x-5y +7=0 ; 9y =9. ⇔{ x= -2 ; y= 1 .   B(- 2; 1).  

Уравнение стороны  AC будет имеет вид  y - 6 = k(x - 4) ;  угловой коэффициент  k определяется из  k* k₁= - 1 , где k₁ угловой коэффициент прямой  BH (т.к. AC⊥ BH ):  x+4y -2=0 ⇔ y = (-1/4)x +1/2.       ( k₁ = -1/4 ⇒ k = 4).    y - 6 = 4(x - 4)  

уравнение стороны AC : 4x - y - 10 = 0 .   * * *(1/√17)*(4x -y -10) =0 * * *  

 Для определения  координаты вершины С сначала определим координаты середины  стороны AC (точка M) , а для этого достаточно решить систему уравнений ( уравнении  прямых AC и  BM) :

{ x- 5y +7=0 ; 4x - y - 10 = 0.  ⇔ { x=3; y =2 .                     M(3 ; 2)

x(C) =2x(М)-x(A) =2*3-4 =2 ; y(C) =2y(М)-y(A) =2*2-6 =-2. C(2 ; -2)

* * * т.к.  x(М)= ( x(A) + x(C) ) / 2  ;   y(М)=( y(A) +y(C) ) / 2.  * * *

Уравнение прямой AB: y-6=[(1-6):(-2 -4)]*(x -4) ⇔ 5x - 6y +16 =0.

Уравнение прямой BC: y-1=[(-2-1):(2 -(-2)]*(x -(-2)) ⇔ 3x+4y +2 =0.

Длина высоты BH (расстояние от точки B(-2 ; 1) до прямой AC ).  Нормальное  уравнение   прямой  AC:  (4x - y - 10) /√17  = 0                          * * * (4x - y - 10) /√(4²+ (-1)²)  = 0 * * *

d = | 4*(-2) - 1 - 10 | / √17 = 0 . ⇔ d =  19 /√17= ( 19√17 ) / 17 .

4,8(56 оценок)
Ответ:
vlad1435
vlad1435
19.02.2020

task/30246302  В треугольнике заданы вершина А(4,6), уравнения медианы x-5y+7=0 и высоты x+4y-2=0 выходящих из одной вершины. Найти координаты остальных вершин, составить уравнения сторон, а также найти длину высоты треугольника.

решение  Для определенности пусть медиана BM , а  высота BH .  Координаты этой вершины  B определяется в результате решения системы { x -5y +7=0 ; x + 4y-2= 0 . ⇔  {x-5y +7=0 ; 9y =9. ⇔{ x= -2 ; y= 1 .   B(- 2; 1).  

Уравнение стороны  AC будет имеет вид  y - 6 = k(x - 4) ;  угловой коэффициент  k определяется из  k* k₁= - 1 , где k₁ угловой коэффициент прямой  BH (т.к. AC⊥ BH ):  x+4y -2=0 ⇔ y = (-1/4)x +1/2.       ( k₁ = -1/4 ⇒ k = 4).    y - 6 = 4(x - 4)  

уравнение стороны AC : 4x - y - 10 = 0 .   * * *(1/√17)*(4x -y -10) =0 * * *  

 Для определения  координаты вершины С сначала определим координаты середины  стороны AC (точка M) , а для этого достаточно решить систему уравнений ( уравнении  прямых AC и  BM) :

{ x- 5y +7=0 ; 4x - y - 10 = 0.  ⇔ { x=3; y =2 .                     M(3 ; 2)

x(C) =2x(М)-x(A) =2*3-4 =2 ; y(C) =2y(М)-y(A) =2*2-6 =-2. C(2 ; -2)

* * * т.к.  x(М)= ( x(A) + x(C) ) / 2  ;   y(М)=( y(A) +y(C) ) / 2.  * * *

Уравнение прямой AB: y-6=[(1-6):(-2 -4)]*(x -4) ⇔ 5x - 6y +16 =0.

Уравнение прямой BC: y-1=[(-2-1):(2 -(-2)]*(x -(-2)) ⇔ 3x+4y +2 =0.

Длина высоты BH (расстояние от точки B(-2 ; 1) до прямой AC ).  Нормальное  уравнение   прямой  AC:  (4x - y - 10) /√17  = 0                          * * * (4x - y - 10) /√(4²+ (-1)²)  = 0 * * *

d = | 4*(-2) - 1 - 10 | / √17 = 0 . ⇔ d =  19 /√17= ( 19√17 ) / 17 .

4,4(29 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ