Объяснение:
Равнобед. треугольник ABC
Угол CBM = 20 град
AB = BC
BM - высота
Найти: углы треугольника ABC
1. Так как треугольник ABC равнобедренный, BM - высота, биссектриса и медиана. Значит, угол CBM = углу ABM = 20 град. Тогда угол ABC = угол CBM + угол ABM = 40 град.
2. Так как треугольник ABC равнобедренный, угол A = углу C (как углы при основании). Пусть угол A равен x. Тогда и угол C = x. Сумма углов в любом треугольнике равна 180 град. Составим сумму углов для треугольника ABC:
Угол ABC + угол A + угол C = 40 град. + x + x = 180 град
40 град. + 2x = 180 град
2x = 180 - 40
2x = 140
x = 70 град.
Значит, угол A = углу C = 70 град.
ответ: угол A = 70 град, угол C = 70 град, угол ABC = 40 град.
Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)