Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.
Градусная мера угла С меньше заданной нами части градусной меры углов на 20 градусов, чтобы найти эту часть нужно эту разницу в 20 градусов прибавить к 180, тогда мы получаем следующее уравнение:
x+2x+x=200, 4x=200, x=50 градусов. Теперь просто подставляем найденную нами величину в заданные условием величины наших углов.
Угол А=50 градусов, угол В=2*50=100 градусов, а угол С=50-20=30.
Проверим найденные значения на верность, их сумма должна быть равна 180 градусам:
100+500+30=180, так и есть, следовательно, найденные градусные меры углов верны.
ответ: угол А=50 градусов, угол В=100 градусов, угол С=30 градусов.