объяснение:
центр описанной окружности треугольника совпадает с точкой пересечения серединных перпендикуляров. значит, нам нужно найти эту точку.
есть два способа ( может быть их больше ), которые вроде смогут .
1. способ:
линейка имеет форму прямоугольника. каждую сторону треугольника делим пополам, и оттуда вычертим серединные перпендикуляры.
2. способ. линейка не имеет вид ппямоугольника или углы уже не прямые. каждая сторона будет основанием для нового треугольника, с концов стороны мы проводим равные отрезки соединёнными в одну точку. теперь проводим медиану, поделив основание пополам, а медиана в равнобедренном треугольнике, проведённая к основанию, и есть высота. делаем это с каждой стороной.
теперь, у нас есть все серединные перпендикуляры. если они ещё не соединились друг с другом, нужно продолжить их.
2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников.
S(прям)=3*6=18 ед²;
S(тр)1=3*2/2=3 ед²;
S(тр)2=4*2/2=4 ед²;
S(тр)3=1*6/2=3 ед²;
S(тр)=18-3-4-3=8 ед²;
4) ∪MD=L/360*90=2piR/4=piR/2=6.5pi
R/2=6.5; R=13
S(ABCD)=AD*OM=2R*R=2R^2=2*13^2=338 кв.см
3) (рисунок снизу)