Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
В основании лежит квадрат, пусть его сторона равна х, тогда высота прямоугольного параллелепипеда равна 2х. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений, отсюда: х² + х² + (2х)² = (2√6)² 2х² + 4х² = 24 6х² = 24 х² = 4 х = ±2 отрицательный корень не удовлетворяет условию ⇒ х=2 В основании прямоугольного параллелепипеда лежит квадрат со стороной 2 см, высота параллелепипеда = 2*2 = 4 см.
Вычислим синус угла между диагональю параллелепипеда и плоскостью его основания. ΔАВС - прямоугольный по условию (∠С = 90°)