ответ:
чебышев сумел создать новые направления в разных областях: теории вероятностей, теории приближения функций многочленами, интегральном исчислении, теории чисел и т.д. в теории вероятностей ввел метод моментов; доказал в общей форме закон больших чисел, применив для этого неравенство, названное впоследствии его именем (неравенство бьенеме – чебышева). в теории чисел чебышеву принадлежит ряд работ по распределению простых чисел. в работе 1850 чебышев доказал утверждение, известное как постулат бертрана, согласно которому между числами n и 2n – 2(n > 3) лежит по крайней мере одно простое число. кроме того, чебышев является создателем новых методов в теории чисел. известны работы ученого в области анализа.
В равнобедренном треугольнике высота к основанию является также биссектрисой и медианой.
BH - высота/биссектриса/медиана
AC=4x, AB=3x
AH =AC/2 =2x
BH =√(AB^2 -AH^2) =√(9-4) x =√5 x (т Пифагора)
Центр вписанной окружности - пересечение биссектрис.
AI - биссектриса
По теореме о биссектрисе
BI/IH =AB/AH =3/2 => IH =2/5 BH =8 (см)
Центр описанной окружности - пересечение серединных перпендикуляров.
MO - серединный перпендикуляр к AB
AB/BH =3/√5 => AB =3/√5 BH =12√5
△OBM~△ABH (прямоугольные с общим углом)
OB/AB =BM/BH => OB/12√5 =6√5/20 => OB =18 (см)
Или
cosA =2/3
sinC =sinA =√(1 -cosA^2) =√5/3
AB =BH/sinA
AB/sinC =2R (т синусов) => R =BH/2sinA^2 =20/2 :(5/9) =18 (см)