Объяснение:
Воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А(х1;у1) и B(х2;у2):
|AB| = √((х1 - х2)² + (у1 - у2)²).
1) Найдем расстояние между точками A(-6;0) и B(0;8):
|AB| = √((-6 - 0)² + (0 - 8)²) = √((-6)² + (-8)²) = √(6² + 8²) = √(36 + 64) = √100 = 10.
Следовательно, расстояние между точками A(-6;0) и B(0;8) равно 10.
2) Найдем расстояние между точками M(8;0) и N(0;-6):
|MN| = √((8 - 0)² + (0 - (-6))²) = √((8)² + (-6)²) = √(8² +6²) = √(64 + 36) = √100 = 10.
Окружность, вписанная в правильный треугольник
Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.
1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.
Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.
okruzhnost-vpisannaya-v-pravilnyj-treugolnikНапример, в правильном треугольнике ABC AB=BC=AC=a
точка O — центр вписанной окружности.
AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.
\[AK \cap BF = O,\]
\[AK \cap CD = O.\]
2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:
\[OF = \frac{1}{3}BF,\]
\[r = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]
Таким образом, формула для радиуса вписанной в правильный треугольник окружности
\[r = \frac{{a\sqrt 3 }}{6}\]
Обратно, сторона равностороннего треугольника через радиус вписанной окружности:
Объяснение:
Объяснение:
Разместим внутри нашего квадрата маленькие квадратики, как показано на рисунке. Попробуем найти количество таких квадратиков и длину стороны каждого, чтобы общая сумма их периметров была равна 1992.

Обозначим число маленьких квадратиков вдоль стороны через N, а длину сторон маленьких квадратиков через A. Сумма периметров этих квадратиков будет равна 4N2A, а нам надо, чтобы эта сумма была равна 2020, т.е. 4N2A = 2020. Поскольку вдоль большого квадрата размещается N квадратиков со стороной A, то NA  1 и NA < 1. Значит, 4N > 1992 и 4N  2020 т.е. N  498. Взяв N = 500, A = 0, 002020, получим набор квадратиков, сумма периметров которых будет равна 0, 0020204500500 = 2020, что и требовалось.