Отметим ромб буквами - левая верщина А, сверху В, справа С и внизу D.
Тогда треугольник АВС равнобедренный, т.к. это ромб, в котором все стороны равны. Значит, если угол ВАС = 32 градуса, то и угол ВСА = 32 градуса. Тогда в треугольнике ВОС (он кстати прямоугольный, т.к. диагонали ромба пересекаются под прямым углом) у нас уже есть два угла - угол ВОС = 90 градусов, угол ВСА = 32 градусам. Т.к. сумма углов в любом треугольнике равна 180 градусов, то в нашем треугольнике ВОС угол СВО = 180 - (90 + 32) = 180 - 122 = 58 градусов
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²