Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
4,6(26 оценок)
Ответ:
02.07.2022
1. Верно ли, что всякая теорема имеет обратную? Нет (например, теорема о сумме смежных углов не имеет обратной). 2. Можно ли найти два смежных угла, сумма которых равна 360°? Нет (по соответствующей теореме, сумма двух любых смежных углов равна 90°). 3. Существует ли треугольник, у которого два прямых угла? Нет (если бы у некого треугольника было бы два прямых угла, то по теореме о сумме углов треугольника на два других приходилось бы 0°, что невозможно по аксиоме об измерении углов). 4. Верно ли, что у равностороннего треугольника все стороны равны? Да (по определению равностороннего треугольника). 5. Действительно ли у всякого треугольника есть три вершины? Да (по определению треугольника). 6. Верно ли, что аксиомы необходимо доказывать? Нет (аксиома — утверждение, не требующее доказательств). 7. Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 180°? Да (по свойству углов, образованных при пересечении параллельных прямых секущей). 8. Верно ли, что перпендикулярные прямые пересекаются под прямым углом? Да (по определению перпендикулярных прямых). 9. Действительно ли угол, образованный касательной и радиусом, проведённым в точку касания, равен 90°? Да (по определению касательной). 10. Верно ли, что всякие смежные углы равны? Нет (будут равны лишь те смежные углы, каждый из которых равен 90°).
Дать точкам имена и перечислить их в решении