1 вариант. СОЧ №4 по геометрии за 4 четверть. 1) Составьте общее уравнение прямой, проходящей через точки А(0; 0) и в(9; 10). [2] У. А B о 2) Найдите абсциссу точки D параллелограмма ABCD, если А(0; 0), B(5; 0), C(12; – 3), a P точка пересечения диагоналей параллелограмма. [3] D С 3) Точка М делит отрезок РК в отношении 3:1, считая от точки Р. Найдите координаты точки P, если заданы координаты точек Ми К: (2; — 4) К(3; 5). [4] 4) а) Изобразите окружность, соответствующую уравнению (х – 3) + (у – 5) = 49. [2] Б) Определите взаимное расположение окружности (х – 3) + (у – 5) = 49 их=-2. [3] A 5) На рисунке OB = 10, OA = 82.Луч ОА составляет с отрицательным направлением оси Ох угол в 45°, а точка В удалена от оси Оу на расстояние, равное 8. [6] а) Найдите координаты точки А. 82 4597 K о 10 b) Найдите координаты точки В. 8 B c) Найдите длину отрезка АВ.
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
Из трапеции АВСD имеем: углы ВОС и АОD равны как вертикальные, углы ОАD и ОСВ, а также углы ODA и ОВС равны как внутренние разносторонние. Следовательно, треугольники BOC и AOD подобны по трем углам. Из теоремы подобных треугольников: отношение площадей подобных треугольников равно квадрату коэффициенту их подобия, то есть S(AOD)/S(BOC) = k^2. Имеем: k^2 = 27/3, k^2 = 9, k = 3. Стороны подобных треугольников пропорциональны: AO/OC = k, имеем: 6/OC = 3, OC = 6/3, OC = 2. АС = АО + ОС, АС = 6 + 2 = 8. ответ: 8.
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).