Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
1) Расположим куб в системе координат так, как показано на рисунке. Точка А - совпадаем с началом координат. Тогда координаты вершин А(0;0;0) ; В(0;1:0) ; С(1; 1; 0) ; D(1; 0; 0) ; В₁(0;1;1) Координаты точки М (1; 1/2; 1/2) Координаты векторов
Скалярное произведение равно 0, значит векторы ортогональны, прямые AM и B₁D перпендикулярны Найдем координаты середины отрезка В₁D - точки K
K(1/2; 1/2;1/2) Найдем координаты середины отрезка АМ - точки Е
E=(1/2; 1/4:1/4)
ответ. 1) прямые АМ и В₁D перпендикулярны, угол между ними 90°.2) расстояние между серединами отрезков АМ и В₁D равно
Задача 2. ( см. рис. 2) В грани ОХZ - квадрат, все стороны которого 1. Диагональ квадрата ОВ имеет длину √2 и легко находится по теореме Пифагора 1²+1²=2² В прямоугольном треугольнике АВО угол АВО равен 30°, угол АОВ равен 90°, так как ось оу перпендикулярна плоскости ОХZ. В прямоугольном треугольнике против угла в 30° катет в два раза меньше гипотенузы. Пусть ОА=y, тогда АВ=2y По теореме Пифагора АВ²=АО²+ВО² (2y)²=y²+(√2)² ⇒ 3y²=2 ⇒ ответ.
Задача 3. Так как векторы а и b коллинеарны, то их координаты пропорциональны. Вектор a имеет координаты (6k; 8k;-7,5k), где k- коэффициента пропорциональности Так как угол между векторами a и j - тупой, значит их скалярное произведение отрицательно. Координаты вектора j - (0;1:0) Найдем скалярное произведение
Так как k<0, то к=-2 ответ. Вектор a имеет координаты (6·(-2); 8·(-2);-7,5·(-2)=(-12; -16; 15)
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.