1) из вершины тупого угла, равен острому углу параллелограмма:
Из вершины опущены две высоты: одна на противоположную сторону h1 идругая на смежную сторону h2. Через точку основания h2 проведём прямую перпендикулярную высоте h1. Вседствии чего у нас образуется три подобных прямоугольных треугольника из них следует утверждение, что угол между высотами = острому углу паралелограмма.( там сплош паралели и перпендикуляры) Когда Вы начертете рисунок всё бросится в глаза.
2) острого угла, равен тупому углу параллелограмма: Высоты будут опущены на продолжение сторон паралелограмма. Опять рассматриваем три подобных прямоугольных треугольника, один из которых рассматривали в первом случае.
Угол между внешними высотами = равен тупому углу паралеллограмма.
1. Горизонтальная прямая линия 2. Перпендикуляр к ней 2.1 Окружность радиуса R с центром на прямой 2.2 Окружность радиуса R с центром в точке пересечения прямой и первой окружности 2.3 Прямая через точки пересечения двух окружностей. Это перпендикуляр 3. Угол в 30 градусов с перпендикуляром 3.1 Окружность радиуса R с центром в точке пересечения прямой и перпендикуляра 3.2 Окружность радиуса 2R с центром в точке пересечения первой окружности и перпендикуляра 3.3 Прямая через точки пересечения окружности радиуса 2R с прямой и с перпендикуляром. Угол 30 градусов с вертикалью построен 4. Биссектриса угла в 30 градусов 4.1 Окружность из центра угла 30° Радиус произвольный 4.2 Окружность из точки пересечения окружности пункта 4.1 с одной из сторон угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1 4.3 Окружность из точки пересечения окружности пункта 4.1 с другой стороной угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1 4.4 Прямая линия между точками пересечения окружностей 4.2 и 4.3 5. Всё готово, 105° = 90° + 15°
1) из вершины тупого угла, равен острому углу параллелограмма:
Из вершины опущены две высоты: одна на противоположную сторону h1 идругая на смежную сторону h2. Через точку основания h2 проведём прямую перпендикулярную высоте h1. Вседствии чего у нас образуется три подобных прямоугольных треугольника из них следует утверждение, что угол между высотами = острому углу паралелограмма.( там сплош паралели и перпендикуляры) Когда Вы начертете рисунок всё бросится в глаза.
2) острого угла, равен тупому углу параллелограмма: Высоты будут опущены на продолжение сторон паралелограмма. Опять рассматриваем три подобных прямоугольных треугольника, один из которых рассматривали в первом случае.
Угол между внешними высотами = равен тупому углу паралеллограмма.