Даны точки А(1; 5), B(-3; 1).Точка C- середина отрезка АВ. а) Найдите координаты середины отрезка AB. запиши формулу. б) Найдите длину отрезка AB. запиши формулу. в) Определите, какая из данных точек принадлежит прямой 2x-y+ 3 = 0. Верных ответов:6 точка В не принадлежит прямой Точка В принадлежит прямой Точка А принадлежит прямой Точка А не принадлежит прямой
А) Если вершины квадрата MNKP делят каждую сторону квадрата ABCD в отношении 3:4, то каждая из его сторон разделена на 2 части, равные: (28/ (3+4))*3 = 12 см и (28/ (3+4))*4 = 16 см . Между сторонами треугольников АВСД и MNKP образуются треугольники. где гипотенузой являются стороны квадрата MNKP, а катетами - отрезки сторон квадрата АВСД по 12 и 16 см. Отсюда сторона квадрата MNKP равна √(12²+16²) = √(144+256) = √400 = 20 см. б) Чтобы найти сторону квадрата ABCD, если MN=10 см, примем её за х. Тогда катеты в рассмотренных ранее треугольниках будут равны (3/7)х и (4/7х. По Пифагору ((3/7)х)² + ((4/7х)² = 10² (9/49)х²+(16/49)х² = 100 25х² = 100*49 х² = 4*49 х = 2*7 = 14 см.
Пусть дана трапеция АВСD. Диагонали трапеции делят ее на 4 треугольника, из которых два подобны. △АОD подобен △ВОС. Отношение АО:ОС=13:3 ⇒ АD:ВС=13:3 ∠СВD=∠ВDА по свойству углов при параллельных прямых и секущей Но ВD - биссектриса ∠АВС ⇒ ∠СВD=∠АВD, ⇒ ∠ВDА=∠АВD. △АВD - равнобедренный с равными углами при основании ВD и равными сторонами АВ=АD Пусть коэффициент отношения оснований будет х. Тогда ВС:АD=3х:13х АВ=АD=13х Опустим высоту ВН на АD Треугольник АВН - прямоугольный. АН=(АD-ВС):2=5х АВ²-АН²=ВН² 169х²-25х²=576 144х²=576 х²=4 х=2 см ВС=2*3=6 см АD=2*13=26 см Площадь трапеции равна произведению высоты на полусумму оснований: S ABCD= BH(BC+AD):2=24*16=384 см² ---- [email protected]
-hi
-hello
-who u do?
-me?
-yes
-dr04y