Восновании прямой призмы лежит прямоугольный треугольник с острым углом альфа. диагональ большей боковой грани равна d и образует с боковым ребром угол бета. найти объём призмы.
Объем прямой призмы равен произведению площади основания на высоту. V = So*h. В нашем случае площадь основания - это площадь прямоугольного треугольника So=(1/2)*a*b, где а и b - катеты. Для начала найдем гипотенузу "с" основания и высоту призмы "h" из прямоугольного треугольника, образованного диагональю большей боковой грани "d" (как гипотенуза): так как Sinβ =c/d, a Cosβ=h/d, то
с=d*Sinβ, h=d*Cosβ.
В прямоугольном треугольнике (основание призмы) Sinα=b/c, Cosα=a/c. Отсюда катеты равны
b=c*Sinα = d*Sinβ*Sinα и a=c*Cosα=d*Sinβ*Cosα.
Тогда So=(1/2)*dSinβ*Cosα*dSinβ*Sinα =(1/2)*d²Sin²β*Sinα*Cosα.
Так как в параллелограмме противоположные углы всегда равны, то угол a= углу c, а угол b=углу d.
1) если а = 80, то и с=80. Сумма углов параллелограмма =360 градусов, значит углы b и d в сумме составляют 200 градусов, а по отдельности по 100, так как они равны. А=С=80 градусов Б=Д=100 градусов
2)так как односторонние углы (а,б / с,д) составляют в сумме 180 градусов, то угол а= 75 градусов, а угол б=105 (105+75=180/ 105-75=30) А=С=75 градусов Б=Д=105 градусов
3)так как углы а и с равны и в сумме дают 140, то по отдельности угол а и угол с = 140:2=по 70 градусов каждый А=С =70 Б=Д = 110
4)угол Б в два раза больше угла а, а в сумме они дают 180 градусов, следовательно, угол а=60, а угол Б =60*2=120 А=С=60 Б=Д =120
5) проведём диагональ от угла Б к углу Д, получился треугольник. Он прямоугольный, так как один из угол =90 градусов. Нам дано 2 угла 90 и 30 градусов, значит третий угол (А) равен 60 градусов (так как сумма углов треугольника равна 180 градусов) . Углы а и с=60, а углы Б и Д= 360-(60+60)= 240. По отдельности они равны 240:2=120. А=С=60 градусов Б=Д=120 градусов
Объем прямой призмы равен произведению площади основания на высоту. V = So*h. В нашем случае площадь основания - это площадь прямоугольного треугольника So=(1/2)*a*b, где а и b - катеты. Для начала найдем гипотенузу "с" основания и высоту призмы "h" из прямоугольного треугольника, образованного диагональю большей боковой грани "d" (как гипотенуза): так как Sinβ =c/d, a Cosβ=h/d, то
с=d*Sinβ, h=d*Cosβ.
В прямоугольном треугольнике (основание призмы) Sinα=b/c, Cosα=a/c. Отсюда катеты равны
b=c*Sinα = d*Sinβ*Sinα и a=c*Cosα=d*Sinβ*Cosα.
Тогда So=(1/2)*dSinβ*Cosα*dSinβ*Sinα =(1/2)*d²Sin²β*Sinα*Cosα.
V=So*h = (1/2)*d²Sin²β*Sinα*Cosα*d*Cosβ = (1/2)*d³Sin²β*Cosβ*Sinα*Cosα.