3 пары равных треугольников дна рисунке.
Объяснение:
1.
∠AEB = 180° - ∠BED, так как эти углы смежные,
∠AEC = 180° - ∠CED, так как эти углы смежные,
по условию ∠BED = ∠CED, значит и ∠АЕВ = ∠АЕС.
2.
Рассмотрим ΔАЕВ и ΔАЕС:
∠ВАЕ = ∠САЕ по условию,
∠АЕВ = ∠АЕС (доказано в п. 1),
АЕ - общая сторона, значит
ΔАЕВ = ΔАЕС по стороне и двум прилежащим к ней углам.
В равных треугольниках против равных углов лежат равные стороны, следовательно АВ = АС и ВЕ = СЕ.
3.
Рассмотрим ΔBED и ΔCED:
ВЕ = СЕ (доказано в п. 2),
∠BED = ∠CED по условию,
ED - общая сторона, значит
ΔBED = ΔCED по двум сторонам и углу между ними.
Из равенства треугольников следует, что BD = CD.
4.
Рассмотрим ΔABD и ΔACD:
АВ = АС (доказано в п. 2),
BD = CD (доказано в п. 3),
AD - общая сторона, значит
ΔABD и ΔACD по трем сторонам.
2) В любом треугольнике высоты или их продолжения пересекаются в одной точке. - да
3) Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. - да
4) В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой. - да
5) Любой диаметр окружности есть хорда. - да
6) Сумма углов прямоугольного треугольника равна 180. - да
7) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотой треугольника. - нет
8) В треугольнике может быть два тупых угла. - нет
9) Сумма двух сторон треугольника меньше третьей стороны треугольника. - нет
10) Все точки каждой из двух параллельных прямых равноудалены от другой прямой. - да
11) Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и углу другого прямоугольного треугольника, то такие треугольники равны. - да
12) Две прямые, перпендикулярные к третьей, не пересекаются. - да
13)Медиана, проведенная из вершины прямого угла прямоугольного треугольника равна половине гипотенузы. - да