Объяснение:
ΔABC подібний ΔA₁B₁C₁ ; P : P₁ = 2 : 5 ; якщо а і а₁ - найменші сторони ,
то а + а₁ = 28 см ; а₁ = 28 - а .
Як відомо a / a₁ = P/P₁ ; a /( 28 - a ) = 2/5 ;
5a = 56 - 2a ;
5a + 2a = 56 ;
7a = 56 ;
a = 8 см ; а₁ = 28 - 8 = 20 ( см ) .
За умовою a : b : c = 4 : 5 : 6 ; a = 8 = 4m ; m = 8 : 4 = 2 , тоді
b = 5m = 5*2 = 10 ( см ) ; с = 6m = 6*2 = 12 ( см ).
ΔАВС : 8 см , 10 см , 12 см .
Аналогічно a₁ : b₁ : c₁ = 4 : 5 : 6 ; a₁ = 20 = 4n ; n = 20 : 4 ; n = 5 , тоді
b₁ = 5n = 5*5 = 25 ( см ) ; c₁ = 6n = 6*5 = 30 ( см ) .
ΔА₁В₁С₁ : 20 см , 25 см , 30 см .
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ.
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.
Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
ВК и СМ - биссектрисы равных углов В и С соответственно.
Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине.
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.