В равнобедренной трапеции угол при основании равен 45 градусов, боковая сторона равна 9 корень 2 см, а диагональ равна 15 см. Найти периметр и площадь трапеции.
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать.
Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
АВСД- трапеция, АД и ВС основания.<А=<Д=45⁰, ВД=15, АВ=ДС=9√2.
S=((AD+BC)/2 )·BK (ВК и СМ перпендикуляры к АД). Р=АД+ВС+2·АВ.
АД=АК+КД. ΔАВК, <К=90⁰,<А=45⁰,а значит и <В=45⁰ ,откуда АК=ВК=х. По т. Пифагора х²+х²=(9√2)² ,2х²=81·2, х²=81, х=9.АК=ВК=9.(ΔАВК=ΔСМД,откудаАК=МД=9).
ΔВКД.<К=90⁰, по т. Пифагора КД=√(ВД²-ВК²)=√(225-81)=12. АД=9+12=21,
ВС=КМ=КД-МД=12-9=3.
S=((21+3)/2)·9=12·9=108.
З=21+3+2·9√2=24+ 18√2.
ответ: 108см²; (24+18√2)см.
Объяснение:
Изи