Плоскость BMD - равнобедренный треугольник, плоскость a даёт в сечении четырёхугольник РКТА, состоящий из двух равнобедренных треугольников РКТ и РТА с общим основанием РТ. Проведём сечение CSA. Оно перпендикулярно заданным плоскостям и пересекает их по высотам треугольников. Из подобия треугольников в полученном сечении имеем: - высота треугольника РКТ равна половине высоты BMD, - основание треугольника РКТ равна половине основания BMD. Получаем: S(РКТ) = (1/4)S(BMD). Высота КЕ треугольника РКТ равна половине высоты МО треугольника BMD, а сумма высот КА треугольников РКТ и BMD в 2 раза больше МО, то есть равна 4 высоты КЕ. Отсюда вывод: высота ЕА равна 3 высоты КЕ и площадь треугольника РТА равна трём площадям РКТ. Подходим к ответу: S(РКТА) = 4S(РКТ) =S(BMD).
Пусть Н-проекция высоты на основание, она лежит на гипотенузе , так как грань . проходящая через гипотенузу-по условию перпендикулярна основанию. Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2. С высотой пирамиды НS они образуют прямоугольные треугольники. В этих треугольниках SH-общая высота и одинаковый угол бетта по условию. Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует что НН1=НН2. Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα) Площадь основания S(осн)=a^2*sinα*cosα/2 Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))
Проведём сечение CSA.
Оно перпендикулярно заданным плоскостям и пересекает их по высотам треугольников.
Из подобия треугольников в полученном сечении имеем:
- высота треугольника РКТ равна половине высоты BMD,
- основание треугольника РКТ равна половине основания BMD.
Получаем: S(РКТ) = (1/4)S(BMD).
Высота КЕ треугольника РКТ равна половине высоты МО треугольника BMD, а сумма высот КА треугольников РКТ и BMD в 2 раза больше МО, то есть равна 4 высоты КЕ.
Отсюда вывод: высота ЕА равна 3 высоты КЕ и площадь треугольника РТА равна трём площадям РКТ.
Подходим к ответу:
S(РКТА) = 4S(РКТ) =S(BMD).