Мы получили соотношение длин отрезков АК и КВ гипотенузы АВ:
КВ = 4 АК .
Путь АК = х, тогда КВ = 4х
2) Так как перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, то:
СК² = АК · КВ
СК² = х · 4х
СК² = 4х²
СК = √(4х²) = 2х
3) Выразим площадь треугольника АКС через х и найдём значение х (то есть длину отрезка АК):
Точка О-середина оси цилиндра. Диаметр основания цилиндра виден из точки О под прямым углом, а расстояние от точки О до точки окружности основания цилиндра равно 2 см. Вычислите объем цилиндра. Объем цилиндра равен произведению площади его основания на высоту. V=SH Все нужные измерения найдем с т. Пифагора. Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ с катетами АО=ОВ=2 см АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно, радиус основания цилиндра (2√2):2=√2 СО- половина высоты цилиндра СН и равна радиусу основания, т.к. ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, => СО= АС=√2. Высота цилиндра СН =СО*2=2√2 V=SH=π(√2)²*2√2=4π√2 см³
Проведем радиусы ОА, ОВ, ОС. По условию, угол АСВ = 120 1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
10
Объяснение:
1) Рассчитаем соотношение длин отрезков АК и КВ гипотенузы АВ, для чего площадь треугольника СКВ (S₂) разделим на площадь треугольника АКС (S₁) :
S₂ = 1/2 · КВ · КС = 16 (площадь треугольника равна половине произведения основания на высоту)
S₁ = 1/2 · АК · КС = 4
Отношение площадей:
S₂ : S₁ = (1/2 · КВ · КС) : (1/2 · АК · КС) = КВ : АК = 16 : 4 = 4
Мы получили соотношение длин отрезков АК и КВ гипотенузы АВ:
КВ = 4 АК .
Путь АК = х, тогда КВ = 4х
2) Так как перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, то:
СК² = АК · КВ
СК² = х · 4х
СК² = 4х²
СК = √(4х²) = 2х
3) Выразим площадь треугольника АКС через х и найдём значение х (то есть длину отрезка АК):
АК = х, КС = 2х
S₁ = 1/2 · АК · КС = 4
1/2 · х · 2х = 4
2х² = 8
х² = 4
х = √4 = 2
Таким образом:
АК = 2
4) Так как КВ = 4 АК,
то КВ = 2 · 4 = 8
КВ = 8
5) АВ = АК + КВ = 2 + 8 = 10
АВ = 10
ответ: гипотенуза АВ = 10