Так как все углы вписанные, они равны половинам дуг, на которые опираются. Тогда дуга АД=60гр и дуга АВС=100гр и дуга СД=360-160=200 тогда угол САД=100гр
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Если на ребрах тетраэдра abcd отмечены точки v (на ребре ab), r (на ребре bd) и t (на ребре cd), а по условию нужно построить сечение тетраэдра плоскостью vrt, то постройте, прежде всего, прямую, по которой плоскость vrt будет пересекаться с плоскостью abc. в данном случае точка v будет общей для плоскостей vrt и abc. 2для того чтобы построить еще одну общую точку, продлите отрезки rt и bc до их пересечения в точке k (данная точка и будет второй общей точкой для плоскостей vrt и abc). из этого следует, что плоскости vrt и abc пересекаться будут по прямой vк. 3в свою очередь прямая vк пересечет ребро ас в точке l. таким образом, четырехугольник vrtl и является искомым сечением тетраэдра, построить которое нужно было по условию . 4обратите внимание на то, что, если прямые rt и bc параллельны, то прямая rt параллельна грани авс, поэтому плоскость vrt пересекает данную грань по прямой vк', которая параллельна прямой rt. а точка l будет точкой пересечения отрезка ас с прямой vк'. сечениететраэдра будет все тем же четырехугольником vrtl. 5допустим, известны следующие исходные данные: точка q находится на боковой грани adb тетраэдра abcd. требуется построить сечение этого тетраэдра, которое бы проходило через точку q и было бы параллельным основанию abc. 6ввиду того, что секущая плоскость параллельна основанию abc, она также будет параллельна прямым ав, вс и ас. а значит, секущая плоскость пересекает боковые грани тетраэдра abcd по прямым, которые параллельны сторонам треугольника-основания авс. 7проведите из точки q прямую параллельно отрезку ав и обозначьте точки пересечения данной прямой с ребрами ad и bd буквами m и n. 8затем через точку m проведите прямую, которая бы проходила параллельно отрезку ас, и обозначьте точку пересечения данной прямой с ребром cd буквой s. треугольник mns и есть искомым сечением.