Всё решение в файле. Верно заметили товарищи модераторы, что я рассматривал частный случай. Решаем для общего: Соединяем концы хорд с центром окружности, получаем 2 треугольника. 1)Радиусы равны в любом случае, еще дано равенство хорд, значит, треугольники равны по 3 сторонам. Равноудаленность показывают равные высоты а если треугольники равны, то равны и их соответственные элементы, к высотам это так же относится. Ч.т.д. 2)Радиусы по-прежнему равны. Здесь рассматриваем уже прямоугольные треугольники, на которые разбивают высоты наших треугольников (они же биссектрисы и медианы в связи с тем, что треугольники равнобедренные). Получается, что все 4 треугольника равны между собой по гипотенузе (радиус) и катету (высоте), а значит, что и "большие" треугольники равны между собой, т.к. составляющие их геометрические фигуры соответственно равны. А это, в свою очередь, значит, что в этих треугольниках все соответственные элементы равны, в том числе и хорды окружности, ч.т.д.
АВ - гипотенуза, СН - высота
АН = 3 см
НВ = 9 см
Объяснение:
Дано:
тр АВС (уг С=90*)
уг В = 30*
Ас = 6 см
СН - высота
Найти:
АН и НВ - ?
1) рассм тр АВС
АВ = 2* АС по св-ву катета, лежащего против угла в 30*,
АВ = 2*6 = 12 см
уг А = 90 - 30 = 60* по св-ву углов в прямоуг тр
2) рассм тр АНС, в нём уг А = 60* (из п1), уг Н = 90* (по усл СН - высота)
уг НСА = 90-60 = 30* по св-ву углов прямоуг тр;
АН = АС : 2 ; АН = 6 : 2 = 3 см по св-ву катета, лежащего против угла в 30*
3) АВ = АН + НВ
АВ = 12 см из 1 п
АН = 3 см из 2 п
НВ = 12 - 3 = 9 см