Объяснение: площадь трапеции с диагоналями пересекающимися под прямым углом вычисляется по формуле:
S=d²/2
Так как трапеция равнобедренная, то АВ=СД, и диагонали АС=ВД и при пересечении они делятся на одинаковые отрезки. Найдём величину диагонали. Диагонали АС и ВД образуют при пересечении 2 равнобедренных прямоугольных треугольника ВОС и АОД, в которых ВО=СО и АО=ДО , которые являются катетами, а ВС и АД - гипотенузы. Катет равнобедренного прямоугольного треугольника меньше гипотенузы в √2 раз, поэтому ВО=СО=2/√2см, а
1) Противолежащие стороны параллелограмма равны. Противолежащие углы параллелограмма равны(так как у равных треугольников соответственные углы равны) . ДОКАЗАТЕЛЬСТВО:Проведя диагональ BD, мы получим два треугольника ABC и BCD, которые равны, так как у них BD - общая сторона, Р1=Р4 и Р2=Р3 (как накрест лежащие при параллельных прямых). Из равенства треугольников следует равенство противоположных сторон и углов. 2) Противоположные стороны попарно равны: AB = CD, AD = BC. Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D. Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD. Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180, ∠B + ∠C = 180, ∠C + ∠D = 180, ∠D + ∠A = 180. Противоположные стороны попарно равны и параллельны: AB = CD, AB || CD. Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру. Противоположные стороны попарно параллельны: AB || CD, AD || BC. 3) вроде у которого все стороны равны 4) Трапеция — четырёхугольник, у которого только одна пара противолежащих сторон параллельна. 6) Равнобедренная когда равны боковые стороны. Прямоугольная имеет прямой угол.
ответ: S=9см²
Объяснение: площадь трапеции с диагоналями пересекающимися под прямым углом вычисляется по формуле:
S=d²/2
Так как трапеция равнобедренная, то АВ=СД, и диагонали АС=ВД и при пересечении они делятся на одинаковые отрезки. Найдём величину диагонали. Диагонали АС и ВД образуют при пересечении 2 равнобедренных прямоугольных треугольника ВОС и АОД, в которых ВО=СО и АО=ДО , которые являются катетами, а ВС и АД - гипотенузы. Катет равнобедренного прямоугольного треугольника меньше гипотенузы в √2 раз, поэтому ВО=СО=2/√2см, а
АО=ДО=4/√2см.
Тогда АС=ВД=4/√2+2/√2=6/√2
Теперь найдём площадь трапеции зная её диагонали:
S=(6/√2)²÷2=36÷2÷2=9см²