Постройте сечение правильного тетраэдра SABC плоскостью, проходящей через точку M - середину ребра AS, точку N - центр грани BCS и точку P, лежащую на высоте BH треугольника ABC так, что HP=2BP. В каком отношении плоскость сечения делит ребро AB?
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Правильный тетраэдр, все грани - правильные треугольники.
В правильном треугольнике высоты/биссектрисы/медианы к любой стороне совпадают.
BH - высота/медиана, HP/PB =2/1 (по условию)
Центр △BCS - пересечение биссектрис/медиан.
BD - медиана, BN/ND =2/1 (свойство медиан треугольника)
Плоскость (DBH)
HP/PB *BN/ND *DE/EH =1 (т Менелая)
2/1 *2/1 *DE/EH =1 => DE/EH =1/4
DE/HD =1/3
Плоскость (ACS)
HD - средняя линия в △ACS => HD||AS, HD =AS/2 =SM
△DKE~△SKM (по накрест лежащим при HD||AS)
DK/SK =DE/SM =DE/HD =1/3
(DK=x, SK=3x, SD=DC=4x) => SK/KC =3/5. Нашли точку K.
Плоскость (BCS)
CL/LB *BN/ND *DK/KC =1
CL/LB *2/1 *1/5 =1 => CL/LB =5/2. Нашли точку L.
Плоскость (ABC)
CL/LB *BP/PH *HF/FC =1
5/2 *1/2 *HF/FC =1 => HF/FC =4/5
(HF=4x, FC=5x, AH=HC=x, AF=3x) => AF/FH =3/4
HP/PB *BT/TA *AF/FH =1
2/1 *BT/TA *3/4 =1 => BT/TA =2/3. Нашли точку T.
Сечение MKLT
Плоскость сечения делит ребро AB в отношении 3:2 от точки A.