Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90°. Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
Если считать плотности одинаковыми, тогда арбузы отличаются только по объему, от коего и зависит масса. так. как объем - это кубическая (третьей степени) величина от радиуса(диаметра), то увеличение диаметра в 3 раза ведет увеличение объема в 3*3*3=27 раз. Соответственно и масса больше в 27 раз.
С точки зрения здравого смысла задача бессмысленна. Если спелый нормальный арбуз - масса хотя бы 3 кг, тогда другой 81 кг. Ого! А если другой - 27 кг (тоже ого!), тогда первый - всего 1 кг. Тогда он , вероятнее всего, зеленый, плотности разные, соответственно и диаметры отличаются не в 3 раза. Хотя составителям задачи что только не приснится в пьяном угаре
Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°