Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
8 см.
Объяснение:
В прямоугольном треугольнике медиана, проведенная к гипотенузе равна ее половине (свойство).
Доккзательство: около любого треугольника можно описать окружность, и при том только одну. У описанного прямоугольного треугольника прямой угол (угол против гипотенузы) опирается на диаметр этой окружности. Следовательно, гипотенуза является диаметром описанной окружности, а медиана, проведенная к гипотенузе (делящая ее пополам по определению) равна радиусу этой окружности, то есть половине гипотенузы.