Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².