В прямоугольный треугольник с катетами 8 и 15 вписана окружность. Точки K, M, P - точки касания этой окружности со сторонами треугольника. Найдите площадь треугольника KMP.
Четырехугольник, соединяющий середины сторон - параллелограмм, его стороны параллельны диагоналям и равны их половине. И его площадь равна половине площади четырехугольника. Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе). Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.
В пространстве существуют точки, что принадлежат данной плоскости и точки, что ей не принадлежат.(аксиома) Пусть точка А - точка, которая не принадлежит плоскости альфа (а значит не принадлежит и пряммой а) Через пряммую а и точку, что не лежит на пряммой можно провести плоскость. Проводим такую плоскость Бэта. Пряммая а принадлежит обоим плоскостям Альфа и Бэта, но эти плоскости разные , так как точка А плоскости Бэта не принадлежит плоскости Альфа. Таким образом мы доказали требуемое утверждение
Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе).
Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.