Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
Так как в параллелограмме противоположные углы всегда равны, то угол a= углу c, а угол b=углу d.
1) если а = 80, то и с=80. Сумма углов параллелограмма =360 градусов, значит углы b и d в сумме составляют 200 градусов, а по отдельности по 100, так как они равны.
А=С=80 градусов
B=D=100 градусов
2)так как односторонние углы (a,b / c,d) составляют в сумме 180 градусов, то угол а= 75 градусов, а угол b=105 (105+75=180/ 105-75=30)
А=С=75 градусов
B=D=105 градусов
3)так как углы а и с равны и в сумме дают 140, то по отдельности угол а и угол с = 140:2=по 70 градусов каждый
А=С =70
B=D = 110
4)угол B в два раза больше угла а, а в сумме они дают 180 градусов, следовательно, угол а=60, а угол B =60*2=120
А=С=60
B=D =120
5) проведём диагональ от угла B к углу D, получился треугольник. Он прямоугольный, так как один из угол =90 градусов. Нам дано 2 угла 90 и 30 градусов, значит третий угол (А) равен 60 градусов (так как сумма углов треугольника равна 180 градусов) . Углы а и с=60, а углы B и D= 360-(60+60)= 240. По отдельности они равны 240:2=120.
А=С=60 градусов
B=D=120 градусов