Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
(1) 1 - верно только для квадрата, но не все ромбы квадраты 2 - верно только для треугольника, но не для четырехугольника 3 - верно (2) ABC равен половине центрального угла AOC, который равен сумме AOD = 150 (2*75) и DOC = 70 (2*35). Получается ABC = (150+70)/2 = 110 градусов (3) у равнобокой трапеции сумма острых углов при меньшем основании должна быть меньше 180, а при меньшем основании больше 180. По условию 104 - стало быть это сумма двух углов при большем основании. Угла равны, стало быть меньший угол равен 104/2 = 52 градуса. Тупые углы будут в этой трапеции равны 180-52 = 128 градусов, хоть об этом и не спрашивается. (4) Медиана BM проведенная из вершины равнобедренного треугольника совпадает с его высотой. То есть можно найти из теоремы Пифагора как катет: |BM| = корень(25*25-7*7) = 24
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
S=p*r, где p-полупериметр
p=4*AB/2=4*4k/2=8k
S=8k*k=8k²
ответ: 8k²