Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Задача решается через векторы.
Построим вектор
Середина D отрезка AB может быть найдена откладыванием половины вектора
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты
Вектор высоты
(I)
Таким образом вектор
Вектор
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет
Значит
В итоге
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ: