Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
См. ОБъяснение
Объяснение:
В равнобедренном треугольнике медиана, проведённая к его основанию, является также и его высотой.
Так как размеры не заданы, то строим так:
1) отложим основание треугольника длиной 6 см; обозначим крайние точки отрезка А и С; АС = 6 см;
2) разделим это основание пополам, на 2 отрезка каждый длиной 3 см; середина АС - это точка М; АМ = 3 см; МС = 3 см;
3) к точке М проводим перпендикуляр; на нём откладываем 4 см, считая от основания, это точка В; ВМ = 4 см;
4) соединяем точку В с точкой А; АВ = 5 см;
5) соединяем точку В с точкой С; АС = 5 см.
Построение закончено.