М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
smetankaplaydop0c2u6
smetankaplaydop0c2u6
02.10.2021 00:43 •  Геометрия

АВ и ВС - отрезки касательных, проведённых из точки В к окружности с центром О. СВ=12, ОВ=24 см. Найдите угол между касательными

👇
Ответ:
nikitavor7135
nikitavor7135
02.10.2021

Касательные имеют теорему: радиус, проведённый с точки касания до центра окружности — перпендикулярен её касательной.

То есть: \angle OCB = 90^o.

Так что, треугольники COB & OAB — прямоугольные.

Нам известна гипотенуза OB, равна 24см, и катет CB — равный 12см.

Что-что!?, что мы замечаем? Гипотенуза OB в 2 раза больше катета CB?

Правильно: OB = 24cm; CB = 12cm \Rightarrow CB = 24/2 = 12cm.

Теорема о 30-градусном угле прямоугольного треугольника такова: катет, противолежащий углу 30-градусов — равен половине гипотенузы.

Теорема действует и в обратном порядке: Если катет равен половине гипотенузы, то ему прилежащий угол равен 30°, что и означает, что:

\angle OBC = 30^o.

Теорема о 2 касательных, проведённых с одной точки таков: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.

Значит OB — биссектриса, что и означает, что <B = 30*2 = 60°.

Вывод: угол между касательными равен 60°.

4,7(20 оценок)
Открыть все ответы
Ответ:
Котеня244
Котеня244
02.10.2021

Продлим РА за точку А и СВ за точку В, точку пересечения назовём О.

∆РОС – прямоугольный с прямым углом Р.

Сумма острых углов прямоугольного треугольника равна 90°. Исходя из этого: угол РОС=90°–угол ОСР=90°–45°=45°.

Получим что угол РОС=угол ОСР, тогда ∆РОС – равнобедренный с основанием ОВ.

Тогда РО=РС=9,2 см.

Основания трапеции параллельны, тоесть АВ//РС.

Следовательно: угол ОВА=угол ОСР как соответственные при параллельных прямых АВ и РС и секущей ОС; тогда угол ОВА=45°.

Угол АОВ=45° (доказано ранее)

Получим что угол ОВА=угол АОВ.

Тогда ∆АОВ – равнобедренный с основанием ОВ. Следовательно АО=АВ=2,6 см.

РА=РО–АО=9,2–2,6=6,6 см.

ответ: 6,6 см.


Определи длину меньшей боковой стороны прямоугольной трапеции, если один из углов трапеции равен 45
4,4(48 оценок)
Ответ:
Echo12
Echo12
02.10.2021

Проводим линию параллельную меньшей боковой стороне трапеции от угла, который между меньшим основанием и большей боковой стороной трапеции. Мы получаем прямоугольный треугольник, два угла которого равны 45 и 90 градусам.

Следующий шаг - отнимаем от большего основания меньшее - 10,7-2=8,7 (см) - длина большего основания за линией или один из катетов угла.

Так как сумма углов треугольника равна 180 градусам, то находим оставшийся угол этого самого треугольника - 180-90-45=45 градусов.

Угол в 45 градусов равен второму углу в 45 градусом, следовательно, этот треугольник - равнобедренный и его второй катет равен 8,7 см.

Так как второй катет проведен параллельно меньшей боковой стороне, то они, соответственно, равны 8,7 см.

ответ 8,7 см

4,4(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ