1. Т.к. прямые РМ и BD лежат в одной плоскости (ABD), их надо просто продлить до пересечения. N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒ PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС. KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD) Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС. Т.е. PL║AC. По теореме Фалеса CL:LD = AP:PD = 3:1
1)Площадь боковой поверхности цилиндра находится по формуле 2ПRH,где 2ПR-длина окружности основания,H-высота цилиндра,подставляем всё известное: 1*H=2 значит H=2 2)Радиус основания равен половине стороны треугольника=10/2=5 высота равностореннего треугольника имеет формулу:(а*корень из 3)/2 подставляем:(10*корень из 3)/2=5*корень из 3 3) осевое сечение цилиндра-прямоугольник если диагональ прямоугольника =20 и угол 60,то нижняя сторона прямоугольника =10(лежит на против угла в 30 градусов),вторая сторона прямоугольника равна по теореме Пифагора корень из 300=10*корень из 3 10-это диаметр цилиндра,радиус тогда=5 10*корень из 3-высота цилиндра подставляем в формулу боковой поверхности:2*п*5*3*корень из 3=30П*корень из 3
4) 80°
<АОС больше <АВС на половину