30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Sпол=552см²
V=1264√3/3 см³
Объяснение:
Sбок=1/2*(Росн1+Росн2)*ап.
Росн1=А1В1*4=6*4=24см
Росн2=АВ*4=14*4=56см
Sбок=1/2*(24+56)*8=1/2*80*8=320см²
Sосн1=А1В1²=6²=36см²
Sосн2=АВ²=14²=196см²
Sпол=Sбок+Sосн1+Sосн2=320+36+196=
=552см².
МК=8см апофема.
ОМ=В1С1=6см
ТК=ВС=14см.
Трапеция равнобокая.
ТL=PK
PK=(TK-OM)/2=(14-6)/2=4см проекция апофемы на плоскость
∆МРК- прямоугольный треугольник.
По теореме Пифагора
МР=√(МК²-РК²)=√(8²-4²)=√(64-16)=√48=
=4√3 см высота пирамиды.
h=4√3см
V=1/3h(Sосн1+√(Sосн1*Sосн2)+Sосн2)=
=1/3*4√3(36+√(36*196)+196)=
=1/3*4√3*(36+84+196)=4√3/3*316=
=1264√3/3см³