1. В треугольнике АВС ∠А = 50°, ∠С = 65°. а) Докажите, что треугольник АВС — равнобедренный, и укажите его основание.
б) Отрезок ВМ — высота данного треугольника. Найдите углы, на которые она делит угол АВС.
2. Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них
а) Докажите, что △АОС = △BOD.
б) Найдите ∠OAC, если ∠ODB = 25°, ∠AOC = 110°.
3. В равнобедренном треугольнике с периметром 64 см одна из сторон равна 16 см. Найдите длину боковой стороны треугольника. Объяснить.
Рассмотрим треугольник AOC и треугольник BOD:
угол AOC равен углу BOD(как вертикальные)
AO=OB и CO=OD(по условию,т.к. точка серединой является O)
значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними)
значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC:
по условию угол BDA равен углу ADC
сторона AD-общая
и по условию угол BAD=углу DAC(т.к. AD биссектриса)
Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними)
значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)