АВСД трапеция. ВС- меньшее основание. АВ = ВС = СД поскольку трапеция равнобокая и ее меньшее основание равно боковой стороне. АС - диагональ. Угол САД = 30 градусов. Это все по условию задачи. Решение. Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА. Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов. Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов. Угол АВС = 180 - 60 = 120 градусов. Поскольку трапеция равнобокая, то угол ВАД = СДА = 60 градусов угол АВС = ВСД = 120 градусов.
Прямые АВ и CD не параллельные, то есть пересекающиеся. Дано: угол ABC = угол BCD = Д-ть АВ не параллельно CD Решение1) Предположим, что прямые АВ и СD параллельны. Тогда угол АВС = углу BCD = (как при параллельных прямых АВ и CD и секущей BC)2) Так как сумма углов в треугольнике равна (по теореме о сумме углов в треугольнике), мы приходим к противоречию с первым пунктом моего решения так как угол СВD и угол ВСD в сумме уже дают 3) Мы пришли к противоречию, значит наше предположение не верно, и значит прямая АВ не параллельна CD. Ч.т.
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.