1. Векторы называются равными, если они сонаправлены и равны по длине. Длина вектора OA−→− вычисляется так: этот вектор является половиной вектора CA−→−, вектор CA−→− является диагональю квадрата в основании пирамиды, а значит, гипотенузой прямоугольного равнобедренного треугольника.
OA=CA:2=AB2+AB2−−−−−−−−−−√2=42+42−−−−−−√2=2,83
2. Поскольку стороны оснований относятся друг к другу как 4:2 или 2:1, то и диагонали оснований относятся друг к другу так же. Т.е. C1O1−→−−=CO:2=1,42 м
3. Опустим такую же высоту A1K и рассмотрим получившийся прямоугольный треугольник A1KA. KA - половина OA, и равен по найденному в п.2. 1,42 м. Угол A1AK 45°. Катет находим через второй катет и тангенс прилежащего к нему угла.
1) a+b = 180 градусов, b = a-40 градусов, a+(a-40) = 180, 2a = 180+40 = 220, a = 220/2 = 110, b=110 - 40 = 70. ответ. 110 градусов. 2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!). Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем. 15*15 = t*9t, 15^2 = 9(t^2) = (3t)^2, 3t = 15; t = 15/3 = 5 см. D = t + 9t = 10t = 10*5 = 50 см. ответ. 50 см.
1. Векторы называются равными, если они сонаправлены и равны по длине. Длина вектора OA−→− вычисляется так: этот вектор является половиной вектора CA−→−, вектор CA−→− является диагональю квадрата в основании пирамиды, а значит, гипотенузой прямоугольного равнобедренного треугольника.
OA=CA:2=AB2+AB2−−−−−−−−−−√2=42+42−−−−−−√2=2,83
2. Поскольку стороны оснований относятся друг к другу как 4:2 или 2:1, то и диагонали оснований относятся друг к другу так же. Т.е. C1O1−→−−=CO:2=1,42 м
3. Опустим такую же высоту A1K и рассмотрим получившийся прямоугольный треугольник A1KA. KA - половина OA, и равен по найденному в п.2. 1,42 м. Угол A1AK 45°. Катет находим через второй катет и тангенс прилежащего к нему угла.
|O1O|−→−−−=A1A=KA⋅tan45=1,42 м