1)Сумма внутренних углов в выпуклом многоугольнике равна 180(n-2). В нашем случае сумма внутренних углов должна быть равна 100*n ( n - количество углов); 100n=180(n-2); 180n-100n=360; 80n=360; n=4,5; получается не целое количество углов (сторон); ответ: не существует 2) Можно по другому. Сумма внешних углов в выпуклом многоугольнике всегда равна 360°: 180*n-180(n-2)=360° (180*n - это сумма всех углов: внешних и внутренних; 180(n-2) - это сумма внутренних углов); Внешний - это угол, смежный с внутренним углом 100°. Внешний угол равен 180-100=80°. 360:80=4,5; Получается не целое количество углов. ответ: не существует
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
Объяснение:
<2=180-<1=180-35=145° как смежные
<3=<1=°35° как вертикальные
<4=<2=145° как вертикальные
<5=<4=145° как внутренние разносторонние или можно ещё <5=<2=145° как соответствующие
<6=<3=35° как внутренние разносторонние
<7=<5=145° как вертикальные
<8=<6=35° как вертикальные