По свойству биссектрис трапеции они образовывают при боковых сторонах равнобедренные треугольники. Тогда ВК = АВ = 25 см, СК = СД = 30 см, тогда ВС = ВК + СК = 25 + 30 = 55 см.
Построим высоты ВН и СМ. Четырехугольник НВСМ прямоугольник, тогда НМ = ВС = 55 см.
В прямоугольном треугольнике СДМ определим длину катета ДМ.
ДМ2 = СД2 – СМ2 = 900 – 576 = 324.
ДМ = 18 см.
В прямоугольном треугольнике АВН определим длину катета АН.
АН2 = АВ2 – ВН2 = 625 – 576 = 49.
ДМ = 7 см.
Тогда АД = АН + НМ + ДМ = 7 + 55 + 18 = 80 см.
Определим площадь трапеции.
Sавсд = (ВС + АД) * ВН / 2 = (55 + 80) * 24 / 2 = 1620 см2.
ответ: Площадь трапеции равна 1620 см2.
1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 см, Pтр = 36 см