рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12