1. 2√19 см.
2. 2√3 см.
3. ∠С=120°, BC=3,55 см, АС=6,68 см.
4. 14,2 см.
Объяснение:
По теореме косинусов:
CosC=(AC²+BC²-AB²)/2BC*AC; Cos120°= -1/2;
AB²=AC²+BC²-2AC*BC*Cos120°=4²+6²-2*4*6*(-1/2)=16+36+24=76;
AB=√76=2√19 см.
***
2. По теореме синусов:
BC/SinA=AB/SinC; BC=3√2; SinA=Sin60°=√3/2; Sin45°=√2/2.
AB=BC*SinC/SinA=3√2(√2/2)/(√3/2)=2√3 см.
***
∠С=180°-(∠A+∠B)=180°-(20°+40°)=180°-60°=120°.
По теореме синусов:
a/SinA=b/SInB=c/SinC; Sin120°=√3/2; Sin20°=0,342; Sin40°=
a=c*SinA/SinC=9*0,342/0,866=3,55см.
b=c*SinB/SinC=9*0,643/0,866=6,68 см.
***
4. Радиус окружности, описанной около треугольника находят по формуле:
R=(abc)/4√p(p-a)(p-b)(p-c);
p=(a+b+c)/2=(17+25+28)/2=70/2=35 см.
R=(17*25*28)/4√35(35-17)(35-25)(35-28)= 11 900/4√35*18*10*7=11 900/4√44 100=11 900/4*210=11 900/840=14,2 см.
Sc = d²·tgα·√2/(2+tgα).
Sб = 4d²·tgα/(2+tgα).
So = d²/(2+tgα).
Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.
Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).
Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).
d² = a²·tg²α+2a² = a²(2+tgα). => a = d/(√((2+tgα)).
h = a·tgα = d·tgα/(√((2+tgα)).
Тогда площадь диагонального сечения равна:
Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).
Площадь боковой поверхности равна произведению периметра основания на высоту призмы:
Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).
Площадь основания (квадрата) равна квадрату стороны:
So = a² = d²/(2+tgα).
8:АС:АВ=1:2:3
АС=8*2=16(см)
АВ=8*3=24(см)
Напротив угла А -сторона ВС,напротив угла В-сторона АС,напротив угла С-сторона АВ.
Исходя из этого была получена пропорция выше.